Finite element method for solving nonlinear parabolic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Volume Element Method for a Nonlinear Parabolic Problem

We study a finite volume element discretization of a nonlinear parabolic equation in a convex polygonal domain. We show existence of the discrete solution and derive error estimates in L2– and H –norms. We also consider a linearized method and provide numerical results to illustrate our theoretical findings.

متن کامل

A Finite Element Collocation Method for Quasilinear Parabolic Equations

Let the parabolic problem cix, t, u)ut = aix, t, u)uxx + bix, t, u, ux), 0 < x < 1, 0 < / á T, uix, 0) = fix), w(0, t) = gli), ií(1, t) = giit), be solved approximately by the continuous-time collocation process based on having the differential equation satisfied at Gaussian points £,,i and £;,2 in subintervals (x,-_i, x¡) for a function l/:[0, T] —» 3C3, the class of Hermite piecewise-cubic po...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

and Applied Analysis 3 2. Finite Element Method We adopt the standard notation for Sobolev spaces W Ω with 1 ≤ p ≤ ∞ consisting of functions that have generalized derivatives of order s in the space L Ω . The norm of W Ω is defined by

متن کامل

Finite Element Methods for Parabolic Equations

The initial-boundary value problem for a linear parabolic equation with the Dirichlet boundary condition is solved approximately by applying the finite element discretization in the space dimension and three types of finite-difference discretizations in time: the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1991

ISSN: 0898-1221

DOI: 10.1016/0898-1221(91)90231-r